
a 
ISSN 0265-2910 

a 
il 



FUN IN A DUNGEON The Multi-User 
Dungeon is an adventure game on a : 384 
mainframe that home computers can access 

~ THE SMART SET Coleco’s Adam comes 
complete with a printer, word processor 
and Microdrive-style data storage 

HE 
aie 

Ce h oa ae a. ae 

WRITING FOR THE SCREEN 
Professional software production uses a lot 381 
of sophisticated hardware 

ROCKET MAN A game for the Spectrum 30 
and Vic-20 that is out of this world o 

FROM DAISY WHEEL TO DATA — 
CORRUPTION Our weekly glossary of 
computing terms 

_ 

~ TREAD LIGHTLY We begin constructing 
a graphics program using BBC BAsIc 392 

SHUFFLE THOSE DIGITS We give you. 
a numbers game to play around with | 39 9 

Sites 
aa ° 

00000000 

PRIMITIVE PARTS Good programming 
benefits from the use of algorithms | 38 

_ WINDOW DISPLAY A program that 
allows windows on the Spectrum screen 

GLOBAL ENTERPRISE The Sharp | 
Corporation has a remarkable sales record 400 | 

1) What is the difference between source code and 
object code? ~—S—rs—eOE _ 

2) How many pixels can be represented in one byte. 

in mode 5 on the BBC micro, and why? __ 

3) To write a program in BASIC on the Coleco : 

Adam, what must the user do after switching on the 

4) What is the name of the company you work for 

when playing Jet Pac? _ : 



— 

Many home programmers dream of writing 
a best seller: But they rarely realise what 
they are up against. Professional software 
companies have enormous resources behind 

-them to help produce their chart-toppers. 
One UK software house has over £250,000 
worth of minicomputers dedicated to 
creating packages for home micros. — 

Expensive equipment doesn’t necessarily mean 
successful programs; some amateur writers have 
managed to make a small fortune with software 
they’ve produced on a Spectrum at home. All the 
same, home programming whizzkids are 
becoming an endangered species, especially with 
the development of the big software houses over 
the past few years. Their powerful computers and 
sophisticated programming aids give them a real 
advantage over the home computer owner and 
allow their programmers to be more productive. 

One of the most important attributes of serious 
software for home machines is the speed of 
operation; and this means that programs need to 
be written (at least in part) in machine code. But 
machine code is extremely difficult to work with — 
in particular, machine code programmers need 

WRITING FORTHE 
SCREEN 

other pieces of software to help write their 
programs. At the very least, an assembler program 
will be required to translate the programmer’s 
source code into the object code that the machine 
understands, and this can be quite a challenging 
job if a big program is involved. Many software 
writers work in this way. To write a program for the 
Spectrum, for example, they will use an assembler 
program running on the same machine. This 
method has its limitations. 

Primarily, the quality of assembler programs 
available for home machines is poor. Even the 
simplest of these packages will use up considerable 
amounts of memory, and therefore limit the size of 
the programs that can be written with it. Many 
home machines are also extremely unpleasant to 
work with for long periods of time: poor 
keyboards, poor displays and, in some cases, a lack 
of disk drives, can make using such equipment a 
tortuous task. 

For these reasons most professional companies 
don’t use the micro that the program is intended 
for (called the ‘target machine’), but use business 
computers with special software (known as 
‘development systems’) instead. Programmers 
using these machines often write in languages such 
as PASCAL and c. They use versions of these 

_.. 

_ 

THE HOME COMPUTER ADVANCED COURSE 381 

KEVIN JONES 



Intelligent Software 
Specialising in strategy games 
such as chess, IS uses IBMs 
and Apples, with its own 
specially-developed interfaces, 
to develop software. Dividing 
programs into their machine- 
dependent and universal 
segments makes it easier for IS 
to support a range of 
computers and dedicated 
chess-playing machines 

Visions 
Programmers working from 
home on the target machines 
provide the bulk of Visions’ 
programming effort. After the 
game concept and scenarios 
have been decided, the 
component routines are 
developed in native Assembly 
language (Z80 or 6502) using 
assemblers such as HiSoft 
DevPak on the Spectrum 

BOB BROMIDE 

languages known as cross-compilers or cross- 
assemblers, which permit the work to be done ona 
micro that uses an 8086 processor, for example, 
while the programs that are produced will work on 
machines with Z80 processors. These cross- 
compilers are high-level languages (like Basic), 
which makes them easy for the programmer to 
use, but the programs they create are written in 
machine code. Skilled machine code 
programmers scrutinise the programs that are 
developed, and often succeed in_ further 
optimising them. 

Clearly, a development system has an 
enormous advantage over the home micro. A 
disk-based assembler, or one making use of 
expanded RAM space to store larger tables, will 
work more efficiently than an assembler that has 
to be wound in off tape and operates in the 
confines of a home micro. Debugging routines can 
be added into the development version of the 
code, with no worries about the code being too big 
for memory. It is also far better to work on a 
business computer that has a good keyboard, 
sharp display and disk drives. 
A firm that makes use of this technique of 

program development is Intelligent Software (IS), 
founded in 1981 out of a pooling of experience 
between David Levy, the chess specialist, and 
Robert Madge’s ANT Microware. The company 
specialises in strategy games, mostly written on 
contract for all the popular home micros. They 
also develop the software side of dedicated chess 
machines. Although there are no rapid combat 
displays in games like chess and bridge, a great 
deal of computation goes on behind the scenes. 
So, like arcade games, strategy games also need 
the speed of assembler-written software. 

As well as using the target machines themselves 
for development, IS uses IBM PCs and Apples 
with specially developed interfaces to allow code 
to be exchanged across its range of machines. The 
company is often involved in conversion projects 
— transferring a chess game, say, from one 
computer to another — so its programmers have 

REE 
ee 

382 THE HOME COMPUTER ADVANCED COURSE 

2 

learned to write code in a form that is easily 
segmented. One level of segmentation that proves 
useful when the time comes to hand code from one 
processor to another is the division of the program 
into playing code and input/output code. The I/ 
O code on the new machine will have different 
port or memory addresses, and will perhaps be 
strategically different too (polling replaced by 
interrupts, and so forth). Ingenuity may well be 
required to get round the hardware limitations, but 
there won’t be a forbidding quantity of input/ 
output. Playing code, on the other hand, will be 
there in abundance, but because it is isolated from 
the hardware (except, of course, the processor) its 
conversion will be straightforward. 

IS wants to avoid restricting programmers’ 
inventiveness, so there are very few ‘house rules’ to 
govern the writing of code. One important point 
that they insist on, though, is that source code 
includes numerous comments, so it is always clear 
what the routines are doing. 

Where programmers are working at home for a 
software house, each developing his or her own 
project, there is little pooling of resources. In this 
case, individuality is preserved at the cost of a great 
deal of duplicated effort, because the code for 
similar routines has to be reinvented by each 
separate programmer. | 

One software company, Psion, is making use of 
computers even larger than the IBM PC. Among 
British software houses writing for the home 
computer games market, Psion is unique in doing 
the bulk of its development on minicomputers. 
The company’s hardware installation alone is 
worth a quarter of a million pounds. 

Psion began as a company by developing 
software for the 7X81 — and used ZX81s to doit. 

TONY SLEEP 



When it went on to create the Horizons tape issued 
with every Spectrum, Psion bought a TRS-80 with 
disks, a machine that uses the same Z80 processor, 
and built a special interface between the two 
machines. But by August 1982, the company 
decided that it couldn’t go on knocking up a 
completely different development system every 
time a new home computer went on the market. 
So it ploughed back profits into buying heavy- 
weight hardware with plenty of spare processing 
power. In principle, this hardware should be 
flexible enough to cope with whatever computers 
the future might bring. The machines chosen were 
a pair of Vax 750s, running the DEC operating 
system VMS. 

The Vax 750s brought two advantages to Psion: 
the quality of the software provided by DEC, with 
the opportunity it provides to create specially 
designed software aids, and the sheer ‘muscle- 
power’ of the operating system and hardware 
combination. There is plenty of room for a 
collection of software aids like compilers, libraries 
of common subroutines, and debugging 
programs, all shared between the 16 to 20 
programmers who may be logged on to a single 
machine at the same time. The two machines allow 
software to be easily transferred from one to the 
other when needed. 

Libraries of common subroutines had already 
been part of Psion’s philosophy in the TRS-80 
days, but on a dual floppy system swapping the 
data between disks became tedious. The new Vax 
machines allow teams of writers to work together, 
sharing common project libraries from which 
modules can be called up almost instantly, and 
libraries can even be shared between teams 
working on different projects. This is the big 
advantage of a timesharing system — and as an 
added bonus it will also take care of their 
administrative work without having to interrupt 
the programmers. Psion plans to add a third Vax to 
shoulder the administration tasks, leaving two 
machines free for software production. 

Even if you could afford it, you would be wrong 
to think that going out and buying a Vax would 
instantly put you on a par with Psion. Very little of 
this well-developed work environment has been 
handed to Psion on a plate by DEC. It has taken a 
lot of hard slog, both to get simple tasks performed 
efficiently and reliably, and in the large number of 
hand-wrought software aids and utilities (written 
in c) that Psion has added. 

Psion uses c, an ‘intermediate-level’ language 
that can produce reasonably compact and fast 
object code for 16-bit chips like the 8086, 
although this is far from the case for eight-bit c 
compilers. So in writing for target machines like 
the Spectrum it has been necessary for Psion to 
develop its own special techniques. Psion is not 
keen to disclose its secrets, but it is known the 
company used c to write its own compiler, which 
in default of a name gets called ‘our table 
language’. This looks a little like c, is portable 
between different processors, and creates 

extremely efficient code. 
There is a universal rule that system 

maintenance and writing in-house programming 
aids like the table language generally takes 30 per 
cent of the entire programming effort, but Psion 
finds the extra time well worth while. Having the 
source code developed in-house means total 
ownership: you can take it to pieces and improve 
or adapt it in a way completely impossible with 
commercially acquired software. If a bug turns up 
in bought-in software it is difficult or impossible to 
get it fixed, and there is usually no question of 
making internal changes. 

The special software bought by Psion includes 
programs that are exact simulations of popular 
microprocessors, such as the Z80 and 6502. Thus, 
the giant Vax computers can be made to behave 
just as if they were Commodore 64s or Spectrums. 
Despite the power of the Vax computers, the 
simulators run at a fraction of the speed of the 
target machine. The advantage is that they allow 
the programmer to look at the contents of every 
register inside the microprocessor at any stage of 
the program. This is particularly useful for 
tracking down bugs in programs. Normally, when 
a machine code program goes wrong and crashes, 
the programmer can’t tell what went wrong. Psion 
can thus save many hours of debugging. 

Much of Psion’s recent development effort has 
gone into producing the suite of four standard 
business programs that are provided with the 
Sinclair QL. The Motorola 68000 family of chips, 
one of which powers the OL, was designed around 
high-level languages, and c programs compile 
down so efficiently on these chips that writing in 
assembler becomes unnecessary. If all home 
computers followed the QL lead, c could replace 
assembler completely, and Psion and the smaller 
software houses could leave the Dickensian work 
of hand-coded translation behind forever. 

THE HOME COMPUTER ADVANCED COURSE 383 

Psion | 
In 1982 this company bought a 
pair of Vax 750 minicomputers 
as the basis of their software 
development system. Each 
machine allows up to 20 
programmers at a time to use 
the range of cross-compilers, 
software lioraries and 
debuggers for creating and 
translating programs 

TONY SLEEP 



ne 

Wrestling With MUD 
Mainframe adventures allow the 
involvement of many players — 
in Multi-User Dungeon, up to 
43 Novices, Warriors, 
Enchantresses, and so on, 
compete or co-operate to 
gather treasure and become 
omnipotent Wizards or 
Witches. Mainframe adventures 
also support large detailed 
scenarios: MUD locations 
include The Land, various 
caverns, a forest, a dragon 
island, The Sea and The 
Swamp, all of which may ~ 
contain treasure, goblins and 
zombies. Six telephone lines 
permit connection to home 
micro players 

APPLICATION / MULTI-USER DUNGEON 
a 

FUN IN A DUNGEON 

Adventure games usually pit the player 
against the imagination of the writer, who 
determines certain actions that must be 
performed to complete the game. With 
MUD, the Multi-User Dungeon, many 
players, at their home computer terminals, 
can log into a mainframe machine to play an 
adventure game against each other. 

MUD is a real-time adventure where you meet 
other players, have conversations with them, ask 
their advice, join- with them against a common 
enemy or fight them. They are not part of the 
program, they are playing the game at the same 
time as you, and so their actions affect yours. 
MUD runs on a giant DEC10 computer at 

Essex University, and all you need to play it on 
your Own microcomputer is a terminal emulator 
program, a telephone, a modem, and a Packet 
Switching System (PSS) account. A terminal 

SORIA RE 
SAA MaMa EAD AANA 

384 THE HOME COMPUTER ADVANCED COURSE 

emulator program allows your micro to 
communicate with the mainframe via a telephone 
link. You may choose to write your own emulator 
or to buy one. It should ideally allow the screen to 
scroll, and give an 80-character line length. 
Micronet software is not suitable since it does not 
permit this. It is possitile to use micros with less 
than 80-column displays, but this is awkward. 
There are some excellent packages available; for 
example, Termi and Communicator are ROM 
chips for the BBC Micro. 

The modem needs to be able to communicate 
with British Telecom’s PSS, and can be 300/300, 
1200/75, or 1200/1200 baud. A Micronet 
acoustic coupler is quite satisfactory. PSS is a 
networking service that enables you to contact 
distant host computers, often for the cost of a local 
phone call. There is also a charge for data sent over 
the PSS. For details contact British Telecom. 

The procedure for gaining access to the 
mainframe is straightforward. With the terminal 



software running, you dial the PSS exchange at 
which you are registered,.connect your modem 
and key in your identity. Then you enter the PSS 

address of Essex University’s DEC10. A special 
account has been set up at Essex to permit free 
access to MUD from midnight to 7am on 
weekdays, and 10pm to 7am at weekends, when 
the mainframe is under less pressure. Log in to this 
special account, and then enter RUN MUD. 

The program is continually updated, so the first 
thing you will see is the date of the latest version. 
You choose a character name to play under, 
known as your ‘Persona’, and you tell MUD what 
this is. If you are playing the game for the first time 
then a new persona will be created for you, and 
you will be classified as a Novice. Levels of 
experience are: 

If you end your session without being killed the 
points that you have accrued will be noted by the 
program, and you can continue next time from 
that score. You get points and increase your level 
of experience by dropping items of treasure in the 
swamp, by overcoming the odd problem, by 
destroying various nasties like rats and zombies, 
and by winning a fight against another player. If 
you get killed in a fight with another player your 
persona is removed from the game, and you must 
begin again as a Novice, with no points. Therefore, 
it is always wise to consider alternatives to combat, 
especially as your opponent may have a stronger 
weapon or more stamina than you. 

You start the game on a ‘Narrow road between 
lands’. Typing ‘WHO’ will provide a list on the 
screen of all the others who are playing at that 
time. You may choose to say hello to one of them. 
For example, typing ‘Jez, hi there — I’m new and 
could use some advice’ would convey that 
message to the terminal of the player called Jez. 
You could talk to all the players at the same time 
by typing ‘Shout, OK you terminal junkies, watch 
out cos here I come’, but it is not advisable to start 
your first game in this way. 

Typing ‘HELP’ will give you some information 
about how to move and will give a brief 
explanation of many of the commands. 
Movement choices are explained in this way: 
‘Most simple movement commands are allowed, 
e.g. n, SW, west, up, jump, plus others youll have to 
find out!” 

The commands available may be listed by 
typing ‘COMMANDS’. There is quite a lot of 
information available, and scribbling a copy on 

paper while the words scroll down the screen is not 
a realistic option. Some terminal software will 
allow you to copy everything that appears on your 
screen onto disk for you to look at later. This will 
also enable you to construct a proper map of the © 
land, which can be amended after each game. 
These are the commands that were available on 

one day: 

COMMANDS (abbreviation in upper case) 

AutoWho,<seconds> — Back BERSERK . 
BRIEF BUG BYE 
CONVERSE DRop <item» DRop ALL 
EMPTY <bag> EXITS Flee<direction> 
FOLLOW «name> Get <item> Get ALL 
Glve <item» TO <name> go <direction> 
Help HELP <name> HINTS, 
HouRS HUG<«name> INFO 
Inventory KEEP <item> —_ Kill «name> 
KISS <name> LEVEL LOG) 
‘level>, <message Look around _ Look <bag> 
Look «direction LOSE <name> MEDITATE 
NoPassWord PassWord = PERSONA 
ProNouns QuickWho Quit 
“<message> ” REFUSE «name> 
RETaliate <item> SAVE SCore 
SHout,<message> “SLEEP SP ELE 
STeal <item> From «name> 
tell <name> ,«message> UNKEEP 
VERBOSE WEIGH <item» WHEN 
WHO WRITE <object>, «message 

MUD isalarge text-based adventure, with lengthy 
and detailed descriptions of the locations. When — 
you are familiar with the scenario you can type 
‘BRIEF’ and not have to read the descriptions each 
time. Prestel subscribers will be aware of the 
slowness and inadequacy of teletext graphics, and 
whilst graphic-based adventures are an interesting 
novelty, dedicated adventure games players will 
always choose a text-based game. A text-only 
adventure allows a_ greater imaginative 
involvement than a graphic one, in the same way 
that a radio play can be more enjoyable than one 
on the television. Another disadvantage of a 
graphic adventure is that each make of home 
micro will need a different version of the game, 
because of the different graphic capabilities of 
home computers. MUD players are likely to be 
using a BBC micro, an Apple or a Spectrum, but 
others will have second-hand terminals from junk 
shops, and therefore the range of machines using 
the program is extensive. 
MUD is expected to be marketed soon. The 

program’s original authors, Richard Bartle and | 
Roy Trubshaw, are writing a version to run on a 
VAX Computer, which will be marketed by 
Century Communications. (A VAX plus software 
and disk drives costs around £50,000.) The game 
will still be played via telephone links, like PSS and 
Prestel, although with enough demand it could 
well be available on cable, as well. MUD players 
will then pay a fee to join the game, perhaps £10 or 
£15 per quarter, plus a small charge for ao hour 
they play. 

THE HOME COMPUTER ADVANCED COURSE 385 

Dungeon Master 
For further details about the ~ 
Multi-User Dungeon contact: 

Richard Bartle 
Department of Computer 
Science 2 

University of Essex 
Colchester 
Essex 



describe how some process may be per- 
formed. A knitting pattern is an algorithm; 
so is a recipe; and so is a computer 
program. We discuss how an understanding 
of the principles of algorithms can improve 

of other processes that have already been defined, 
or in terms of processes that are so basic that they 
do not need to be defined. Thus, in a recipe, one 
instruction may be ‘prepare a bechamel sauce’, 
where a bechamel sauce recipe (algorithm) has 
been given elsewhere in the cookbook. Another 
instruction may be ‘bring the mixture to the boul’, 
where the operation of bringing something to the 
boil is assumed to be fully understood by the user. 
In programming terms, algorithms are 
constructed from instructions that either use 
algorithms (procedures, routines, functions) 
written elsewhere in the program, or ones built 
into the language (commands such as PRINT and 
DIM, or maths functions like LOG and TAN). 

This. article looks at how algorithms are 
constructed from other algorithms and primitive 
processes. The primitives at the disposal of a 
programmer are the commands and functions in 
the language. From these, algorithms are written 
that can do small things (move a sprite, say, or 
accept a number as an input). These algorithms 
are then used to build more general algorithms 
(updating the game display, or controlling a menu 
system), and these algorithms are in turn used as 
parts of larger ones again until the whole 
program, viewed as a single algorithm, is written 
in terms of lower-level algorithms. This concept is 
the basis of what is known as Structured or 
modular programming and is a subject we will 
return to later in the course. 

DESIGNING ALGORITHMS 
An algorithm has an input and an output. This is 
just to say that, as a process, the algorithm will 
work on some initial data to produce a result. ‘This 
initial data is passed to the algorithm from outside 
in the guise of ‘parameters’, which remain 
constant for any particular use of the algorithm 
but may change between different uses. Passing 
parameters will be familiar to even a novice 
programmer since the simple program: 

10 PRINT “Hello World!” 

passes the parameter “Hello World!’ to the 
algorithm called by the PRINT command. Similar 

386 THE HOME COMPUTER ADVANCED COURSE 

examples are FNA(P), TAN(P), LEFTS(PS,5) and 
POKE P,5, where P, PS and 5 are all parameters. In 
the same way, an algorithm’s results are passed 
back as parameters. If the programming language 
being used has local variables (e.g. PASCAL and Cc) 
then the parameters would normally be passed 
with a procedure cali, as in: 

procedure(parameter1, parameter2, etc.); 

It is an essential first step in designing an 
algorithm to consider the contents of the input 
and output parameters, their types (integer, 
floating point, real, string, etc.) and their 
magnitudes and ranges. 
When the input and output of the algorithm 

have been defined, the next step is to form ideas 
as to how one can be transformed into the other. 
Unfortunately, there is no ‘cookbook’ method for 
creating these transformations as they require 
creativity and ingenuity. However, there are 
several ways of helping the process along. 

The most obvious and most often overlooked 
is to borrow the algorithm from somewhere else. 
At the simplest level, the in-built functions of a 
programming language provide many useful 
algorithms, such as string-handling, 
trigonometric functions, input/output, and 
(possibly) sorting and matrix manipulation. 
Apart from this, the algorithm needed may — 
already exist in another of your programs. The 
code for this could be incorporated in the new 
program (creating your own library of algorithms 
is extremely useful). In addition, there are 
published collections of algorithms that are often 
available from public libraries. The Art of 
Computer Programming, Vol I: Fundamental 
Algorithms by D. E. Knuth, although heavy 
going, is highly recommended. 

Programs published in the computer 
magazines are well worth scrutinising for routines 
that may be of use. Finally, there are algorithms 
that are used in other pertinent domains, and 
although they were never meant for computing 
they are extremely useful. The accountancy 
section of the local library will be full of books 
containing formulae for calculating balances and 
depreciation. A little research among these could 
make writing an accounts program a lot easier 
and the result is likely to be a lot more reliable. 
The same is true for other disciplines: 
engineering, electronics, maths, etc. 

Whether adapting an existing algorithm, or 
creating one from scratch, there are certain 
criteria that must be applied to each instruction it 
contains. These are definiteness and effectiveness. 
Definiteness means that the instruction should 



not be ambiguous in any way. Ambiguity is easy 
to introduce at an early stage when the algorithm 
is being written down in English. Words like ‘and’ 
and ‘or’ in English are very different from the 
AND and OR of Boolean logic. For example, if 
the algorithm was meant to select all the names in 
a list that begin with an ‘A’ andall those beginning 
with ‘B’, you could easily write code like: 

IF FIRSTLETTER=“A” AND FIRSTLETTER=“B” THEN 

which is wrong because a logical OR is needed! 
_ The criterion of effectiveness is a demand that 

the program should not contain impossible 
instructions. An instruction is said to be effective 
if it can be done with a pencil and paper in a finite 
time. This means that instructions like ‘let X equal 
the highest prime number’ are not effective (there 
isn’t a highest prime number). | 

GENERAL CONSIDERATIONS 
There are also criteria to judge the algorithm as 
a whole. An algorithm must terminate. The 
algorithm that follows does not terminate (even 
though its instructions are definite and effective) 
and if this was coded into a program it would 
endlessly loop: 

Step 1 let | equal 1 
Step 2 if! > 3 then exit 
Step 3 goto step 1 

Telling whether an algorithm will terminate is not 
always easy, but, in general, algorithms that 
involve loops test for a particular condition 
before they terminate (e.g. if | > 3 in our 
example), and it is necessary to check that it is 

possible to meet that condition. 
_ Efficiency, generality and elegance are ways of 

judging between different algorithms. Efficiency 
is usually judged in terms of time and memory 
use. The two are usually quite compatible — fast 
code may need relatively little space, but bear in 
mind that this need not be so. Having found an 
algorithm, it can be ‘tuned’ for efficiency by 
changing its details. A calculation will be 
noticeably faster and will use less memory if, for 
example, integer rather than floating point 
arithmetic is used. Alternatively, a completely 
different algorithm for doing the same thing could 
be found. 

Generality is the ability of an algorithm to cope 
with many different situations apart from the one 
for which it was designed. It is worth while, in the 
long run, to attempt to make all algorithms as 
general as possible. If a program called for a yes/ 
no response several times, it would be worth 
writing a routine that prompts the user with 
‘please type y or n’, accepts the input, checks 
whether it is ‘y’ or ‘n’, reprompts if it is neither and 
otherwise returns the appropriate response. 
However, the routine could be made more 
general if it could be fed with different prompts 
and potential replies, so it could be used in many 
different situations. Elegance means finding 
algorithms that are both simple and ingenious. In 
all cases it is more sensible to find efficient, 
general algorithms rather than elegant ones. 

Another important aspect of algorithms is the 
flow of control and of data within them and how 
this can be represented with flow charts. This is 
the subject of the next instalment in this series. 

es 

THE HOME COMPUTER ADVANCED COURSE 

Pyramids And Primitives 
The block-structure diagram on 
the left clearly shows the 
nesting of a program’s 
algorithms, while the procedure 
flow diagram on the right 
emphasises the articulations 
and process levels of the same 
program. The most ‘primitive’ 
algorithms are thie most deeply 
nested, and the lowest in the 
hierarchy 

KEVIN JONES 



Searching For The Solution 
The essence of a database 
management system is the 

ability to select records on 
multiple search criteria. 

The Rubik Cube 
represents the 
database, and its 
facets are the records 

DAISY WHEEL 
Until recently, microcomputer owners requiring 
letter-quality printing were restricted to one 
variety of printer — the daisy wheel. The name 
derives from the printing mechanism: individual 
letters are mounted on plastic spokes or ‘petals’ 
arranged in the shape of a wheel about three 
inches (7.5 cm) in diameter. The wheel spins until 
the desired character is at the top, and then a 
hammer strikes the ‘petal’ against the ribbon, 
making an impression of the character on the 
paper. Electronic typewriters also use this 
technique. In some models the letters are 
mounted in a ‘thimble’ shape. 

Daisy wheel printers are considerably slower 
than their dot matrix counterparts; a £400 model 
can print only 10 to 15 characters per second 
(cps), as opposed to typical dot matrix speeds of 
100-160 cps. The fastest daisy wheel models can 
print at 60 cps, but these are priced at around 
£2,000. The main restriction on speed is the fact 
that the printer motor must constantly accelerate 
and decelerate while turning the wheel. Close 
examination of a daisy wheel may give the 
impression that letters are arranged at random, 
but the layout is designed to reduce the average 
amount that the wheel must turn when printing 
standard English text. 

DATABASE 
A database is a _ general-purpose software 
package that is designed for the easy storage and 
retrieval of data. All the information about one 
person (in a mailing list) or object (in cataloguing 
or stock control applications) is contained in a 
record, which corresponds to a card in a card 
index file. Each record consists of fields of 
information, each with its own field name. For 
example, the field named ‘Price’ in a stock control 
program may contain the data ‘£34.25’ in one 
particular record. A collection of records sharing 
the same layout and field names is called a file. 

AVAILABLE 

TENNIS PLAYER 

pL CRICKET PLAYER 

<F READER 

cs) FOOTBALLER 

Bro ARTIST 

al DARTS PLAYER 

- WINE LOVER 

aes CAR OWNER 

scoot PUBLIC TRANSPORT 

AB) CYCLIST 

Simple databases restrict the user to work on a 
single file at a time, but multi-file packages allow 
data to be transferred between different types of 
file. In an invoicing application, for instance, 
information from a customer file that contains the 

388 THE HOME COMPUTER ADVANCED COURSE 

customer’s address and credit limit may be 
merged with data from a product file that gives 
details of prices, product codes and descriptions. 
The most sophisticated microcomputer databases - 
are programmable: the package can ‘learn’ 
sequences of commands that are used frequently 
and will execute them at a single keystroke. Such 
packages are also referred to as appHCAHOe 
generators. 

DATA COMPRESSION 
The rule of thumb method for evaluating data 
storage requirements is to allow for one eight-bit 
‘byte per character, as well as making some 
allowance for operating overheads such as file 
header information and control characters (see 
page 348). Data compression involves trying to 
improve on this rate for two purposes: increasing 
the effective capacity of a disk drive, and reducing 
the time needed to transmit data over a distance. 

At first this may seem very difficult to achieve, 
especially as all characters and some commands 
are ASCII coded. Consider, however, messages 
that use just upper case text and a maximum of 
six other punctuation symbols — just five bits 
would then be needed to represent the 32 (2°) 
possibilities. Characters will no longer 
correspond one-to-one with the byte locations, 
and a special program must be employed to 
compress the data before recording on disk, and 
then decompress it again for use by an application 
program. Such utilities (also called compactors) 
can be purchased to work on standard CP/M 
files. An additional benefit is some measure of 
security — compressed files can’t easily be read on 
another system. 

Compression rates oreater than eight-to-five 
rely on frequency analysis — some sequences of 
characters occur more frequently than others. In 
normal text, a standard list of the 100 most 
common words (and, the, etc.) will account for 
half the text. If these words are replaced by a 
single byte, with a flag-bit to differentiate them 
from normal characters, the saving will be 
considerable. This is called tokenising. 

DATA CORRUPTION 
Data corruption is most likely to happen when 
writing onto a magnetic surface (because of 
imperfections in the media), or when transmitting 
data over a distance (because of extraneous 
noise). It can happen to data residing in memory, 
if an individual RAM chip should overheat and 
behave unreliably, or there is strong electrical 
interference from nearby. 

Magnetic media should always be handled 
carefully, but the only way to guard against 
corruption generally is to employ the principle of 
redundancy — the opposite of data compression. 
This means taking more space or time to 
represent a single piece of data than is strictly 
necessary. Parity and Hamming codes are the 
commonest means of safeguarding against data 
corruption. 

“3 



COLECO ADAM/HARDWARE 

THE SMART SET 

Coleco is an American company that made 
its name as a manufacturer of television 
games consoles. Recently, however, _ it 
moved into the home computer market with 
the Adam, a machine that boasts 80 Kbytes 
of RAM, a built-in word processor, a tape 
data storage system, and a daisy wheel 
printer. All for £625. 

The Adam system is based around the 
ColecoVision television games console, and 
owners of this unit may upgrade it to full Adam 
specification with add-on units. In fact, all Adams 
on sale at the present time are based on the 
ColecoVision module, although a more compact, 
stand-alone Adam is planned. 
When first unpacking the boxes containing the 

Adam system, the sheer number of components is 
a little unsettling. The ColecoVision module clips 
into a large plastic tray, and the ‘memory module’ 
(which also contains the Z80A microprocessor 
and the tape drive) connects to the games unit via 
an expansion port. The module is held in place by 
retaining clips on the tray. The keyboard is 
connected by a length of coiled cable, and one of 
the two games controllers supplied may be slotted 
onto the side of the keyboard to act as a numeric 
key pad. The printer is connected to the memory 
module, and the power is supplied to the whole 

system via a mains lead to the printer. 
The keyboard has 75 keys, including six 

function keys, a set of word processor control keys, 
a cursor cluster, and the usual alphanumerics. It 
is well designed and light, so it is easy to use in a 
lap-held position. 
When the system is first switched on, the Adam 

is in ‘electronic typewriter’ mode. Pressing a key 
displays the character on the screen and at the. 
same time it is printed out. The screen is a 
representation of a sheet of paper and typewriter 
platen. The usefulness of the Adam in this mode is 
limited, but the press of a key switches the system 
to “SmartWriter’ mode. 

SmartWriter is a simple but effective word 
processor that is obviously designed with the 
beginner in mind. The ‘typewriter platen’ display 
is retained, and the bottom line of the screen 
displays the commands allocated to the function 
keys. Sensible use of these keys, together with the 
various word processor control keys on the 
keyboard, makes SmartWriter operation 
extremely easy — in fact the manual is largely 
superfluous as the menu options lead the user 
through all the steps necessary to store, display and 
print text. The screen format is 36 columns by 20 
lines, but longer lines are dealt with by using the 
screen as a ‘window’ on the whole text. 

The tape drive is similar in principle to Sinclair’s 
Microdrive, but has a larger capacity (a claimed 

CHRIS STEVENS 

The Adams Family 

The Adam is an all or nothing 
machine. It is sold as a 
complete system: micro, 
high-speed tape drive, daisy 
wheel printer, keyboard, two 
joysticks and three pieces of 
software (two excellent games 
and a word processor.) This 
makes the Adam quite a 
powerful home computer, yet it 
is essentially an upgrade of a 
TV games unit 

THE HOME COMPUTER ADVANCED COURSE 389 



HARDWARE/COLECO ADAM 

256 Kbytes per tape). It is much faster than 
ordinary cassette tape. It is also under full 
computer control, so the tape can be rewound by 
the computer to find a particular file. Tapes (or 
‘data packs’ in Coleco-speak) are supplied ready- 
formatted, so ordinary audio cassettes may not be 
used. New tapes cost up to £5. When the Adam is 
switched on, the program on any tape present in 
the drive is loaded — this may be a game pack, the 
SmartBAsIC cassette or a program of the user’s 
own. If the drive is empty, the system defaults to 
‘electronic typewriter’ mode. 

The daisy wheel printer uses either fanfold or 
single-sheet paper, and gives a print quality that is 
comparable to an electric typewriter, but it is 
extremely slow and noisy. 

Despite the 80 Kbytes of RAM, the cassette- 
based Smartpasic leaves only 28 Kbytes for the 
user. Smartsasic itself is similar to Apple’s version 
of BASIC, and so is easy to use, with good graphics - 
and a choice of 16 colours. The BAsic manual, 
however, is truly abysmal, written in a 
condescending tone and full of twee expressions, 
such as ‘boo-boo’ for ‘error’. But the similarities 
between Smartpasic and Apple Basic means that 
users have a large number of books and other 
material to refer to. 

At first sight the Adam system appears to offer 
excellent value for money. The built-in software is 
ideal for writing letters, reports or short articles, 
and the tape system is simplicity itself. An added 
bonus is the large amount of available high-quality 
games software — not only may ColecoVision 
cartridges be used on the Adam, but the purchase 
of an adaptor will make a huge range of games 
from Activision and Atari available. More serious 
software is being sold on tape, although the 
number of packages is rather limited. They 

390 THE HOME COMPUTER ADVANCED COURSE 

Joystick Handle 
Although the arm of the 
joystick handle is much 
shorter than most joysticks, 
it still gives re 

Detached Keyboard 
Only two home micros are 
sold with detached keyboards 
even though these are 
considered essential for 
business computers. The 
Adam keyboard includes 
function keys and keys 
dedicated to the word 
processing software that 
comes with the micro 

Joystick Storage 
Two joysticks can be stored 
here when they are not being 
used. The joysticks plug into 
sockets at the side of this 
area 

ColecoVision Video Games 
System 
This unit is sold by itself as a 
dedicated games computer, 
but can be expanded into a 
home computer by adding 
the other units 

Equipment Tray 
This fits onto the bottom of 
the two units to hold them 

firmly together 

Printer Connector 
The printer included with the 
Adam plugs into this socket. 
Power is supplied to the 
Adam through this, so the 
printer must always be 
connected, even if it is not 
being used 

Digital Tape Drive 
This may look like an 
ordinary cassette player, but 
itis a high-speed tape unit 
under full computer control 

CHRIS STEVENS 



Joystick Fire Buttons — 

commas Joystick Number Pad 
The pair of joysticks that 
come with the Adam are 
unusual in having number 
pads built-in 

IMENSIONS 

or ; Adam’s Joysticks 
Tere mh keyboard Two joysticks are supplied as standard with the Adam. One of 
and provides a space to rest a these doubles as a numeric keypad and slots into a special 
joystick holder alongside the keyboard. Coleco also markets two 

‘deluxe games control systems, at £50 each. The Super Action 
Controller set comprises a pair of easy-action joysticks with 
numeric pads and rifle-style triggers replacing the normal Fire 
buttons. These are fitted with standard Atari-type D-connectors, 

Reset Button and so may be used with other systems. A free Baseball games 
cartridge is included. 

The Roller Controller is an arcade-style games control 
panel. This has two standard Coleco joysticks and a ‘trackball’ 
controller for fast response and accurate control. Two sets of 
dual fire buttons allow two-player action, and a mode switch 
selects either joystick or trackball operation. Supplied with this 
unit is Slither, a Centipede-style arcade game. 

~on Games Cartridge 
This plugs into a slot in the 
games unit. Several dozen 
good, if expensive, cartridges 
are available for the machine 

LANGUAGES AVAILABLE 

«= Expansion Socket 
This fits into the back of the 

expansion module 

include a spreadsheet, database, revision aid, and 
a version of the Loco language. The addition of 
the promised 144 Kbytes memory expansion 
should give CP/M capability of a kind, and even 
disks are planned. 

But there are drawbacks. The print quality - not 
as good as one might expect from a daisy wheel, 

Keyboard Cable Socket the printer is woefully slow and noisy, there is a 

A cable (not shown) plugs in severe lack of user RAM, and the fact that BAsiIc 
here to link the keyboard to must be loaded from tape soon proves annoying. 
the main unit With the recent drop in daisy wheel printer prices, 

it should be possible to put together a system that 
out-performs the Adam but costs approximately 
the same. That said, the Adam would appear to be 

Space For Second Tape Drive 
These are not yet available 

Digital Data Pack well worth buying if the user already possesses the | BiVaiW\lascas 
Not to be confused with a : ColecoVision console. For those who wish to 

ferret purchase a home computer system with word 
formatted tapes which cost processing capabilities, the Adam is certainly 
nearly £5 each, and store 256 worth considering — but there may well be other, 
Kbytes per tape better alternatives. 

THE HOME COMPUTER ADVANCED COURSE 391 



Routine Procedure 
Unlike a flow chart, this 
structure diagram shows the 
procedural structure of the 
program rather than the flow of 
control through it. A capsule 
indicates the start of a 
REPEAT... UNTIL loop; the 
lozenges are decision boxes — 
when the test fails, the 
enclosing loop continues. The 
Level numbers show the 
program’s block structure: all 
loop starts and procedure calls 
open a new block of program 
and a lower logical level — 
compare this with the diagram 
on page 387. 

In this short series of articles we shall be 
looking at the construction of a graphics 
game using BBC Basic. The game is 
designed to run on the Model A, Model B 
and the Electron.As each phase of the game 
is developed, the appropriate section of the 
program will be listed, allowing you to build 
up the game with each instalment. 

BBC Basic has two major advantages for the 
programmer over ‘standard’ Microsoft Basic: it is 
fast in execution and has features that allow you to 
structure programs. The essence of developing a 
structured program is to develop small, 
independent sections of code that can be 
individually debugged before assembly into a 
larger program. Any BASIC program can be 
structured to a certain extent by the use of 
subroutines to code each module of the program, 
but BBC Basic has special types of subroutines, 
known as procedures. These can be thought of as 
blocks of code that are designed to doa specific job 
within a program. For example, let us imagine a 
piece of program that has to pause between each 

392 THE HOME COMPUTER ADVANCED COURSE 

TREAD LIGHTLY 

instruction for a given time. In standard sasic this 
may be written using a dummy loop; that is, a loop 
that does nothing except take time to execute: 

10 PRINT “FIRST SESTION” 
20 FOR l=1T0100: NEXT | 
30 PRINT “SECOND SECTION” 
40 FOR l=1T0100: NEXT | 
90 PRINT “THIRD SECTION” 
60 FOR l=1T0100: NEXT | 
70 PRINT “FOURTH SECTION” 
80 END 

A better approach, however, would be to place the 
delay loop in a subroutine: 

10 PRINT “FIRST SECTION” 
20 GOSUB100 
30 PRINT “SECOND SECTION” 
40 GOSUB100 
00 PRINT “THIRD SECTION” 
60 GOSUB100 
70 PRINT “FOURTH SECTION” 
80 END 

100 REM ** SUBROUTINE ** 
110 FOR |=1T0100:NEXT | 
120 RETURN 

JANET BARRANCE 



re 

Replacing the subroutine with a procedure in BBC 
BASIC gives the following code: 

10 PRINT “FIRST SECTION” 
20 PROCdelay 
30 PRINT “SECOND SECTION” 
40 PROCdelay | 
50 PRINT “THIRD SECTION” 
60 PROCdelay 
70 PRINT “FOURTH SECTION” 
80 END 

100 REM ** DEFINE PROCEDURE ** 
110 DEF PROCdelay 
120 FOR l=1T0100: NEXT | 
130 ENDPROC 

There are a number of similarities between the 
subroutine construction and the procedure 
construction; for instance, both come after the 
END statment but can be called repeatedly from 
within the main program. The principal advantage 
of the procedure is that it is called by name rather 
than by line number. The DEFinition of the 
PROCedure could start anywhere after the END 
statement. 

If we wanted our example program to be able to 
wait for different lengths of time before each 
section, then a more important advantage of 
procedures can be utilised: the ability to pass 
values into a procedure definition. Let us say that 
we wished the pause between the first and second 
sections to be 100 loops, the pause between the 
second and third sections to be 200 loops and the 
pause between the third and fourth sections to be 
175 loops. In standard Basic the value of | would 
need to be assigned each time before calling the 
subroutine. Using procedures, the value can be 
passed by means of a bracket at the end of the 
calling statement: 

10 PRINT “FIRST SECTION” 
20 PROCdelay(100) 
30 PRINT “SECOND SECTION" 
40 PROCdelay(200) 
50 PRINT “THIRD SECTION” 
60 PROCdelay(175) 
70 PRINT “FOURTH SECTION: 
80 END 

100 REM ** DEFINE PROCEDURE ** 
110 DEF PROCdelay(N) 
120 FOR I=1TON: NEXT | 
130 ENDPROC 

More than one value can be passed for use within a 
procedure if the items are separated by commas. 
Variable names can also be used in this way to pass 
the value of the variable at the time when the 
procedure is called. 

The game we shall be constructing is for one 
player and uses the keyboard cursor control keys 
to move a mine detector around a minefield. 
Points are scored for each mine successfully dealt 
with. There are, however, several things to slow 
down your progress around the minefield. The 
chief consideration is your assistant who mirrors 
your every move. As you go round dealing with 
the mines you must make sure that he doesn’t tread 

on one. You are also being sniped at and there is a 
two minute time limit to the game. In the final 
version, you will have four willing assistants per 
game and a choice of skill factors from 0, the 
easiest, to 9, the most difficult. 

Because BBC Basic uses procedures, flow 
charts arent of much use. Instead, a structure 
diagram can be used to illustrate what procedures 
are required and how they fit together to make the 
final program. REPEAT. . . UNTIL loops are shown 
as ‘sausage’ shapes in our diagram. Decision boxes 
are like the more usual diamond-shaped box but 
with the top and bottom cut off to save space. It 
should be stressed that this diagram was not drawn 
out in its entirety before programming started, but 
evolved out of a series of refinements. 

SET-UP PROCEDURES 
Brfore we can start defining routines to place 
objects on the screen, we must decide on the 
screen display mode we are going to use. There are — 
three main factors to take into account: resolution, 
colour and memory. In general terms, the more 
information the screen has to hold, the more 
memory it will require. So, higher resolutions and 
more colours mean more memory. If your 
program is short this may not be important to you, 
but the program we are designing is fairly lengthy. 
We do require a few different colours to 
distinguish the mines and the detector/assistant 
and to make the game visually appealing. On the 
Model B we are offered two medium-resolution 
modes. Mode 2 gives us 16 colours to play with, 
wkereas mode 5 offers only four. By looking at 
how the BBC interprets bit patterns in each mode 
we can see why mode 5 uses substantially less 
memory than mode 2. 

Unlike some micros, the BBC holds colour and 
pixel on/off information within one byte for each 
small area of the screen. In mode 2, four bits are 
required to represent the 16 different possible 
colours. Thus, one byte can hold information 
about the colour of two pixels only. The bits within 
the byte are arranged as follows: 

| | een 

As mode 5 restricts itself to four colours, only two 
bits are needed to hold the colour information. 
Thus, one byte can represent four pixels as shown: 

yaa 
Both modes have 160 by 256 pixel resolution, 
hence the number of bytes required for mode 2 
screen memory is (160X256)/2=20 Kbytes, 

Picture Points 
The user-defined characters 
representing the mine, the 
detector and the assistant are 
described. The pixel : 
information is divided into 
eight bytes, with each byte — 
being the binary ‘picture’ of 
one row of the shape 

THE HOME COMPUTER ADVANCED COURSE 393 



Danger Area 
The minefield occupies 20 rows 
of 16 characters, and the mines 
are randomly ‘sown’ during the 
set-up procedure 

JANET BARRANCE 

whereas mode 5 needs (160X256)/4=10 Kbytes 
of memory. By choosing mode 5 we allow 
ourselves an extra 10 Kbytes of memory for our 
program. An added bonus is that mode 2 is not 
available on model A machines, but mode 5 is! 

The construction of user-defined characters is 
simple on the BBC. Each character is made up of 
eight numbers representing the decimal 
equivalents of each row. The character designs for 
the mines, detector, and assistant are given. 

The command VDU23 allows the programmer to 
define characters with ASCII codes from 226 to 
255. The second number in the VDU command 
denotes which code you wish to assign to the shape 
defined by the last eight numbers. 

VDU23,224,0,0,56,254 254 124,0,0 

defines CHRS(224) as the mine shape. To print this 
character we simply issue the instruction PRINT 
CHRS(224). The following procedure defines the 
ie characters to be used in the game. 

we) Er a es a characters 

OREM be PINS 4 

>t EP VDL oa eae he OO, Ho, 254, 254, 124,0,0 

2410 REM ## oh NE DE es : TOR #4 

Oa OIE Teale cok DOS, 1B SO ery LE, ES Gy wad 

2430 REM * * ASSIST i ip 14% 

2440 YOU ee Ms, Eds, Sn bk Gy be BG gl Oe 4G Oe 

2400> ENDPROG 

SCREEN LAY-OUT 
Once the shapes have been defined we can print 
them onto the screen. This is most easily done 
using the PRINT TAB(X,Y) command. In mode 5 
there are 32 rows, each with 20 characters. This 
means that X ranges from 0 to 19 and Y ranges from 
0 to 31. The minefield is to occupy the area shown 
in the diagram. 

To lay the mines randomly within the given area 
we can make use of the RND(N) command. If Nisa 
whole number, then RND(N) returns a whole 
number between 1 and N. The horizontal co- 

ordinate of each mine must be chosen to lie 

MINEFIELD 
AREA 

394 THE HOME COMPUTER ADVANCED COURSE 

annem meme demenemeeaecmmeamemmenemumemamntueateeeemmn immer meade deemed meee et rere eee 

between 2 and 17. RND(16) gives numbers from 1 
to 16 so RND(16)+1 will select co-ordinates within 
the area of the field. This procedure will lay as 
many mines as ial os e the value base to it: 

2360 DEF FROC ay mines (number mines) 

eee be i a ANGE COL ‘al ee 2 ere : E ME qed 
ea [ea VOUS oe 

pray POR [a1 TO rmuunkie ma ries 

gC) PRINTTARB CRND (16) +1, Rh ID ¢ 324 CHR C24) 

Aol ME RT +1 

2o00 AFRO 

In mode 5 we are restricted to four colours and 
these are normally black, red, yellow and white, 
corresponding to colour numbers 0, 1, 2 and 3. 
However, we don’t have to use these colours and 
can change them using the VDU19 command. The 
numbers 0 to 3 are known as the logical 
foreground colours. Each of the 16 colours on the 
BBC has a number that has nothing to do with the 
mode used. These are called the actual colour 
numbers, a table of which appears on page 224 of 
the user guide. Any of the four logical colours can 
be assigned one of the sixteen actual colours. For 
our game we wish the mines to be green (actual 
colour number 2). We do not want the yellow that 
is normally given to us as logical colour 2. The 
VDU19 command does this. 

The detector and assistant take up their initial 
positions in the bottom-left and top-right corners, 
respectively. As we will probably want to re- 
position the detector and assistant later, the 
procedure for positioning them will use variables 
(xdet,ydet) for the detector’s co-ordinates and 
(xman,yman) for the assistant’s co-ordinates. 

2eou DEF FPROCposI tion chars 

~S40 COLOUR 1 

2950 PRINTTAR (xdet, yet) SOMERS o 

2860 FPRINTTAR Cxman, yma) os CHAS ¢ 

2a70 COLOUR 2 

2380 ENDFROC 

he ne 

The COLOUR commands at the beginning and end 
of the procedure select the logical colour that 
future text will have. COLOUR 1 selects logical 
colour 1 (red) to print the detector and assistant 
and COLOUR 2 restores the colour green for future 
printing. Before this procedure can be used, 
however, the values of xdet, ydet, xman and yman 
have to be assigned. This is done in another | 
procedure, along with initialising some other 
variables that will be Ue JOT 
foe DEF PROC tt < aay ise varlabl es 

2S30 xdet=2: ydet=25:xman=1? cy mee 

2540 setart=120rnfinis enatiad 
es ananan” oh) 2 ee cbse" 

2560 ENDFROC 

All these procedures can now be tested by a short 
calling program as follows: 

5 MODE 5 
10 COLOUR 2 
20 PROCinitialise-variables 

30 PROCdefine-characters 
40 PROClay-mines(40) 
50 PROCposition-chars 
60 END 

— In the next instalment we shall look at timing and 
controlling movement from the keyboard. 



wr amet ae - 

ROCKET MAN 

Jet Pac marked the debut of the software 
company Ultimate, Play The Game. 
Originally written for the Spectrum, Jet Pac 
set new standards in high-quality graphics 
on the Sinclair machine and was an instant 
best-seller. The success of the Spectrum 
game meant that a version for the Vic-20 
followed quickly on its heels. 

The ‘blast-the-alien’ type of arcade-style game is iS 
often denigrated for its simplistic, adolescent 
approach. Nevertheless, the design of a successful 
example requires considerable programming skill. 
Jet Pac is such an example. 

As is so often the case, the scenario outlined on 
the cassette inlay seems more complex than it is. 
As the chief test pilot for the Acme Interstellar 
Transport Company, it is your job to travel around 
the galaxy assembling spaceships on assorted 
planets, while collecting any precious stones and 
gold that you can lay your hands on. Rocket 
assembly is greatly assisted by a Hydrovac Jet Pac, 
which is capable of lifting almost anything, and 
allows you to manoeuvre components with ease. 
You are also conveniently armed with Quad 

- Photon Laser Phasers, which are used to blast any 
alien being that might be unreasonable enough to 
complain about you despoiling its planet. 

The game’s description may evoke visions of a 
glorious Technicolor trip through the varied 
ecologies of different planets, but as usual the truth 
is more mundane. The planets you visit are 
virtually identical, so much so that the test pilot/ 
hero must experience a strong sense of déja vu at 
each landing. But the aliens make up for this. ee 
planet is inhabited by a single species only — 
fact there would be little room for any others as all 
the aliens appear to breed like rabbits. These 
species vary in form from flying saucers to 
bouncing balloons, but they all have one thing in 
common — one touch from any one of them 
means instant death. 

Scattered around the surface of each planet are 
three parts of a spaceship; these must be 
assembled before you can move on to your next 
port of call. No screwdrivers or monkey wrenches 
are required on this job — you simply drop the 
components onto the rocket base to see the 
spaceship form before your very eyes. 

It is the aliens that make this game so enjoyable. 
There are plenty of them, and at first they give the 
impression of moving menacingly and unerringly 
in your direction. After a while you realise that 
they are, in fact, following predetermined paths 
from random starting points. The first wave of 

attackers descends slowly, giving you time to blast 
them with your deadly laser. The second wave is 
made up of bouncing balls, which ricochet across 
the screen between the rock ledges and the 
ground. This mixture of set paths and random 
movement provides just the right combination, 
requiring skill and fast reflexes for successful play. 

This type of game is often ruined by a poor 
choice of control keys. Here they have been 
chosen sensibly. Two keys on the bottom row of 
the keyboard are used for left and right movement, 
catering for both left- and right-handed players. 
Any key on the second row up fires the lasers, 
which may be left permanently firing. The row 
above triggers the jets that make you ascend, and 
the top row allows you to hover. A nice touch is the 
fact that if no key is pressed you will drift slowly to 
the planet surface under the force of gravity. 

The graphics are excellent. The test pilot is 
beautifully drawn, as is the Hydrovac Jet Pac, 
which gives off convincing puffs of smoke when 
‘thrust’ or ‘hover’ are activated. The laser streaks 
the sky with multicoloured lines, and the aliens, 
when hit, explode in more clouds of smoke. 

The game is much the same on either the 
Spectrum or the Vic-20, although the latter's 
screen format has the effect of making the test pilot 
look somewhat overweight. On both machines, 
Jet Pac is a satisfying and highly addictive game. 

 4upPp Mx SUF 9@4325 IQSSQs eosrie 

BuUP 
QQ1 4090 

THE HOME COMPUTER ADVANCED COURSE 395 

LIZ HEANEY 



Open Window 
~The word “HELLO” is scrolled 

horizontally and vertically 
around the screen window, one 
pixel at a time 

The ability to create ‘windows’ on a screen. 
display is a particularly useful facility. We 
take a detailed look at a machine code 
program to do just this on the Spectrum, and 
give an accompanying BASIC demonstration 
program that shows the effect of eh on 
the screen. | 

Out miele eodek program mallee you ‘to mdeane 
rectangular windows on the Spectrum screen, and 
to scroll these windows left and right, or up and 
down. The windows may be of any size and can be 
placed anywhere on the screen; they do not need 
to occupy eight by eight pixel character squares. 

The machine code program uses tables starting 
at address $B004 (45060 decimal) to handle 
window parameters and for temporary data 
storage. It takes the address of the table for the 
required window from addresses $B000 and $B001 
(45056 and 45057 decimal). The table for each 
window takes up 11 bytes, so if more than one 
window is required, the table for the second 
window will start at SBOOF (45071 decimal), the 
table for the third window will begin at SBO1A 
(45082 decimal), and so on. 

The BASIC demonstration program uses one 
window only. The details of this window are POKEd 
into memory in lines 180-230, and the window 
initialisation routine is called at line 240. If more 
than one window is required, each one must be 
defined in this way before it can be used. ‘To 
change windows you must POKE the address of the 

~ new window table into memory locations WT and 
WT+1. Scroll directions are set by POKEing values 
into memory location WNDWTB + DIR — simply 
POKE 0 to scroll left, 1 to scroll right, 2 for up, or 3 
for down. | 

The Assembly language program begins by 
defining a number of constants. PIXADR is a 
subroutine in the Spectrum ROM that calculates 
the address of the screen byte, and the bit number 
within that byte, of a point on the screen that is 
defined by its PLOT co-ordinates. PIXADR takes the 
y co-ordinate in the B register and the x co- 
ordinate in the C register and returns the screen 
address in the HL register pair and the bit position 
in the A register. 

The routine INITW first checks that the co- 
ordinates for the bottom right corner of the 
window are in fact below and to the right of the co- 
ordinates of the top left corner, and also ensures 
that the left and right margins are not both in the 
same byte of screen memory. This last check 
ensures that the window is at least one character 
square in width — extra code would be required to 

396 THE HOME COMPUTER ADVANCED COURSE 

WINDOW DISPLAY 
scroll a window that is any narrower. 

Errors in window initialisation are printed out 
by the ROM error message routine. The 
instruction RST 8 (line 2110 of the Assembly 
listing) calls the ROM routine and returns to BASIC 
command mode, and the DEFB 25 in line 2120 
provides the message ‘Q Parameter error. 

The last section of INITW calculates LFTMSK and 
RTMASK, which are used when scrolling the screen 
bytes at the window margins, where part of the 
screen byte may be inside the window and part 
outside. The individual bits in the masks that 

correspond to screen bits that lie outside the 
window margins are set to one, while bits 
corresponding to bits inside the ina area are 
set to Zero. 

The scroll program proper begins at the label 
SCROLL. The program tests the direction of 
scrolling and calls HORIZ for left or right scrolling, 
or VERT for up or down scrolling. 

Left and right scrolling are very similar in 
operation, so instead of using two separate 
routines we have combined them in one. The 
correct code for each scroll direction is selected by 
testing bit zero of the direction byte. To see how 
HORIZ works, we will look at leftward scrolling. 

Both left and right scrolling start with the top 
row of pixels in the window and work downwards, 
so HORIZ begins by copying the y co-ordinate for 
the top row into the temporary store for the 
current row. When scrolling left, we must start at 
the right-hand end of each row of pixels in the 
window and work towards the left. To prepare for 
this, RMASK and LMASK are copied to MASK1 and 
MASK2 respectively, the address of the screen byte 
at the left-hand end of the current row of pixels is 
calculated and stored in the DE register pair, and 
the address of the screen byte at the right-hand end 
of the current row of pixels is calculated and stored 
in the HL register pair. The subroutine HLNSCR is 
then called to scroll the row of pixels. The routine 
tests to see if the bottom row of the window has 
been reached, and if not it takes the next pixel row 
and jumps back to HORIZ3 to scroll again. 

HLNSCR begins at one end of the pixel row, with 
a byte that may have some bits inside and some 
outside the window, then moves along the bytes 
that are contained wholly inside the window and 
finishes at the other window margin, where again 
some bits may be inside and some outside the 
window area. We illustrate this with a diagram that 
shows how the code operates on the right-hand 
byte when scrolling left. The section of HLNSCR 
beginning at NEXT scrolls the bytes inside the 
window area. The bit that was moved out of the 
previous byte into the carry flag has been saved on 



nn rN 

, 
| 
| 
' 

the stack by a PUSH AF instruction, and is restored 
to the carry flag by POP AF. For a leftward scroll the 
routine selects the RL (HL) instruction and the byte 
on the screen is shifted left, with the bit from the 
carry flag being moved into the left-hand end of 
the byte and the right-hand bit going into the carry 
flag. PUSH AF saves the carry flag, so this bit can be 
moved into the next byte. To test for the end of the 
row the routine simply compares the L and E 
registers; this is because the high byte of a screen 
address will be the same for all screen bytes in the 
same row. Partial scrolling of the last byte is 
achieved in a similar way to that of the first byte. 
Up and down scrolling routines are combined 

in a similar way. If we examine what happens when 
VERT is scrolling upwards, we see that the routine 
begins by copying the y co-ordinate for the top row 
into temporary storage for the current row. The 
screen addresses of both left and right-hand 
margin bytes in the row are then calculated and the 
length of the row determined. The routine puts the 
address of the left-hand margin byte into DE and 
the address of the corresponding byte of the row 
immediately below into HL before calling the 
subroutine VLNSCR to do the scrolling. VERT then 
tests to see if it has reached the bottom of the 
window. If it hasn’t, it moves down one line before 
jumping back to VERT5 to scroll another row of 

pixels. If the bottom has been reached, the section 
of the routine beginning at CLREDG fills the bottom 
pixel row with zeros to blank the row on the screen. 

VLNSCR treats margin bytes separately, in a 
similar manner to HLNSCR. The way the code 
handles these edge bytes is illustrated in our 
second diagram. To move the central section of 
the pixel row, the routine increments HL and DE so 
that they point to the first interior byte on the 
current line and the corresponding byte on the line 
above. VLNSCR then calculates the length of the 
central section (the bytes that fall wholly within the 
window area), loads this information into BC and 
uses the block move instruction LDIR to move the 
whole central section of this row of the window up 
one line. | 

These scrolling routines are relatively slow. This 
is partly because left and right and up and down 
routines are combined and the program must 
make frequent tests to decide which piece of code 
must be used, and partly because the bytes at the 
left and right-hand margins require special 
treatment if they straddle the window’s borders. 
The scrolling could be made faster if the program 
were rewritten to give a separate routine for each 
direction of scroll, and if the window were 
restricted to starting and ending at the boundary of 
a byte of screen memory. 

Down The Line 
Horizontal scrolling presents 
particular problems at the 
window edge: the screen byte 
must be masked to isolate the 
pixel bits inside and outside the 
window, and the byte contents 
must be shifted. Both 
processes employ logical AND, 
OR and SHIFT, and the stack is 
used to save the PSR status. 

Vertical scrolling is made 
simpler by the Spectrum’s 
screen memory map (See page 
358). The screen byte must be 
masked to isolate pixels inside 
and outside the window, and 
the EX instruction is used to 
swap the contents of the DE 
and HL registers, which contain 
screen address pointers 

THE HOME COMPUTER ADVANCED COURSE 397 



Windows On The Spectrum 
Operating Instructions 

_ MACHINE CODE/SPECTRUM WINDOWS 

1) Type in the BASIC Demonstration Program 
2) SAVE “SCROLL’ LINE 5 
3) Type in and RUN the Machine Code Loader program 
4) SAVE “SCROLLMC’ CODE 45312,410 onto tape directly after 
the BASIC Program 
9) Rewind the tape and LOAD “SCROLL’ 

Assembly Listing 
10 FIR ADR 
20 We 

2G MASE | 

AQ MASk 2 

cid WADWT Be 

OW LEFT xX 

70 LORY 

80 RIGHTS 

Se ROLY 

1@@ LEI 

Pe RE 

120 CURNTY 

Eee EE LES 

140 LMASK 

120 RMASE 

16@ LENGTH 

18@ INIT 

250 SURO 

Se@ HORI Z 

Soe HURT 2 

4i8 HORIZ2 

440 HORI ZS 

40 HORT 24 

600 HLUNSCR 

710 HLNI 

Jeg HLNE 

7aQ@ NEXT 

7760 HUNG 

800 HLN4 

BEBO HLNS 

892 HLNG 

FiO LAST 

398 THE HOME COMPUTER ADVANCED COURSE 

aemmnnnnnnnemmmnnnnnnmnneenn ren SSS SS 

EGU 

EUU 

EGU 

EOL 

EQU 

EGU 

EGU 

a 

EGU 

EG 

EGU 

EGU 

SSA 

FEOAA 

IRCA 

HEROS 

REO 4 

18 

#100 

HL, (WT) 

HL, (WT) 
HL. 
1x 
1, (1X+DIR) 
Ar 
7 HORIZ 
AE 
NZ, VERT 

A, (1X+TORY) 
CIX+CURNTY) 6 
@, (1X4+DIR) 
Z,HORIZ1 
B, (IX+L MASK) 
A, (IX+RMASE) 
HORIZ2 
BR, (IX+RMASE) 
A, (1X+LMASE) 
(MASE?) 6 
A,B 
(MASE 1) .4 
C, (IX+LEFTX) 
B, CIX+CURNTY) 
PIXADR 
DE, HL 
C, (IX+RIGHTX) 
B, (IX+CURNTY) 
PIXADR 
@, (IX+DIR) 
Z,HORIZ4 
DE, HL 
HLNGCR  - 
A, (IX4+BOTY) 
(IX+CURNTY) 
Z 
CIX+CURNTY) 
HORIZ3 
A, (MASK 1) 
BA 
(HL) 
cA 
A,B 

(HL) 
@, (IX+DIR) 
Z,HLNI 
A 
HLN2 
A 
Ar 
C 
(HL) ,A 
@, (1X+DIR) 
Z,HLNG 
HL 

@, (1X+DIR) 
Z,HLNS 
CHL) 
HLNS 
(HL) 
Ar 
NEXT 
b, HL) 
A, (MASE®) 
C 
BLA 
AF 
@, (1X4+DIR) 
Z HEN? 
c 

HL 7 

HLS 

VERT 

VERT 1 
VERT? 

VER ES 

VERT 4 

VER TS 

VERTIS 
VERT 4 
CLREDG 

ClLRI 

VUNSCR 

ENDEBY | 

INT TW 

LETMSE 

a 

RI MASE. 

Le 

ERROR 
RET 
Rad 

DERE 

PILING 
ie 

@, (MASE Ss) 

C 
B 
(AL) 8 

Clee Lep ry) 
@, (1K4DIR) 
7, VERT 
BR, (I X+ROTY 
VERTS 
B, (1X4 TORY) 
(IX#CURNTY) 8 
PIXADR 
HL 
HL 
C, (IX+RIGHTX) 
BR, (IX +CURNTY) 
PIXADR 

(IX+LENGTH) 6 
@, (1X4+DIR) 
7, VERTA 
CTX+CURNTY 
VERTS 
ee 
_(DXeLEP TS) 
= (TX +CURNTY) 
PIXADR 
DE 
HL 
VLNGCR 
A, (IX+CURNTY) 

, (LX4DIR) 
Z,VERTS 
(1X4 TORY) 
VERT7 
(TX+BOTY) 
NZ,VERT® 
HL 
A, (IX+LMASh) 
(HL) 
(HL) A 
BH, (1X+LENGTH) 
A,@ 
HL 
(HL) A 
CLRI 
HL 
A, (IX+RMASE) 
CHL) 
(HL) A 

A, CIX+L MASE) 
ENDBY | 

CL, (I Xt+LENGTHD) 

A, (IX+RMASE) 
BLA 

(HL) 
CoA 
De aL 
A,8 
(HL) 
c 
(HL) A 
DE , HL 

A, (IX+RIGHTX) 
CIX#LER TX) 
7, ERROR 
C, ERROR 
A, (IX+TORY) 
(IX4+BOTY) 
7, ERROR 
C, ERROR 
Bixee Te 
BH, (IX+TORY) 
FIXADR 
HL 
(IX4+LBIT) (4 
C, (IX+RIGHTX: 
H, (1X4 TORY) 
FIXADR 
(IX+RBIT) A 
AC 
a,c 
L 
7, ERROR 
B, CIX+LBIT) 
A,@ 

a 
(IX4+LMASE) 6 
BR, (IX+RBIT) 
A, 255 
A 

Le 
(IX+RMASE) A 

8 
ott 
ane 

BASIC Demonstration Program 

10 
20 

L2U 

CLEA 

LOAD 

LET 
LET 

LET 

Lee 

Cer 
Let 
eer 

LET 

LEE 
BORD 

PAPE 

Ci 

PORE 

FRE PI 
IN LO,HI 
2a 

2i@ 
PEN 
eae 
Lemons 
eet 

24 
2a 

260 

2/70 

20 

27 

208 
31 
8 

420 
41@ 
420 
40 

440 
472 

gs es 

PORE 

roe e 

ROE E 

FORE, 

RAND 

FOR 

PLOT 

DRAW 

MEX | 

a ese 

FOR Y= 
FAM D 

NEXT 

PRIN 
POPE 

FOR 

RAND 

MEX] 

PORE 

FOR 

RAND 

NEKT 

PEE 

FOR 

ROnD 
NEXT 

PORE 

BOR 

POA) 

MEAT 

atl E 

TLE 

Rose hee 

CODE 

Wl =45056 
WINDOWTABLE=45046@: REM BU@4 HEX 

LEP EX e@ 

TORY=S1 

RIGHT Kee 
BOTY=3 

DIR=7 
SCROLL S45Se 2 

INT TS4S312 

ERG 

Roe ENE 

WI,4: PORE WT+1,176 
Wr & WT+1 NOW CONTAIN ADDRESS 4504¢ 
FORMAT 
WINDOWTABLE+LEFTX,5 
WINDOWTABLE+TORY,8@ 
WINDOWTABLE+RIGHTY, 25@ 
WINDOWTABLE+BOTY, 35 

OMIZE USR INIT 
Veo To ive 
g,¥ 
BESO 
¥ 
WINDOWTABLE+DIR, © 
@ 10 45 

OMIZE USR SCROLL 
Mf 

YOAT 12, 2@. "HELLO: 
WINDOWTABLE+DIR,@ 

i=1 TO 130 
OMIZE USR SCROLL 

I 
WINDOWTABLE+DIR,3 

T=1 TO 35 
OMIZE USK SCROLL 

I 
WINDOWTORLE+DIR, 1 

i=l fo 130 
OMIZE USR SCROLL 

i 
WINDOWTABLE+DIR, 2 

l=1 TO 35 
OMIZE USR SCROLL 

i 
Oo 418 

Machine Code Loader 
Lag 
118 

12@ 

1a 

LA’ 
1o@ 

160 

17 

LO 

Le 

a a 
1@ie 

182g 

1220 
Tad 

1250 
1Q60 

L740 
1280 

1ac@ 

1182 

111 

1122 

1129 

1146 

1158 

1168 

EE 

11s 

1198 

1200 

121@ 

P22 
EAH 
SSN 

1240 
aod 

1260 

L278 
1280 

1290 

130 

121@ 

1320 

1230 

1340 

1258 

1260 

1270 

138 

1200 

149 
1410 

1428 

1430 
1440 

1450 

1460 
1470 

1480 
1490 

150 

SEE 
FOR 

fer 

READ 

PORE 
Let 

NE XE 

READ 

Leo Se 

NEX | 

DATA 
DATA 

DBIA & 
DATA 

DATA 
DATA 

DATA 

DATA 

DATA 

DATA 

DATA 
DATA 

DATA 

DATA 

DATA 

DATA 

DATA 
DATA 

DATA 

DATA 

DATA 

DATA 
DATA 
DATA 22 

DATA 
DATA 

DATA 

DATA 

DATA 
DATA 

DATA 
DATA 
DATA 

DATA 
DATA 

DATA 

DATA 

DATA 
DATA 

DATA 
DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 
DATA 

DATA 
DATA 

DATA 

A=4Sal 

Pete PO SOR Pee te 

S= 

i) 

a, 

Se St 

4 

by 

eo THEN 

i 

420,176. 225,22) 225 205,69. 1147 
178,201. 42,0.176,229 221 225 i272 
21,203,7,78,245,204.29. 177,1164 

eo1,196,164,177, 201,231 ,126,1,1347 

221118 ,6,221,203,7, 70,40, 8a7 
8,221, 70 Boel 26 9,24, 687 
6,221,70,9,221 126,852,711 
. 20,50,2,176,22 1, 78,826 

Woe el 70.6, ees 17a. 4,255. 941 

Sol, 78,2. 201, 7@2,6,205,170,972 
34,251, 203,7,70,40,1,225,811 
205 5 10551775221, 126,2,221, 190,1246 
6,200. 221 55,464,354. 215,568,782 
2,176.71, 166.79, 120.47, 146,627 
So) 205,7,70,40,4, 205,47, 795 
OA > 208 29 ae it tie 221 iase 
202,.7,72.40,5, 25, 24,1, 78% 
45,125,187,40,146,.241,201,207,1076 
7,70,40,4,205,20.24,2, 782 
O07, 22,245, 24 COR SUB G2 Earl es ERNE hav 

176,161,711, 2541 221, 205,7, 70,1150 

42 4, 203,25,24,2,20%.17,518 

Be 5 ize. 47,161,176,119, 201,941 
21,78,0, 221 202, 7, 70,40,840 

5,221, 7@,3.24,3,221, 72, a 
L,eel lis. 6, 20s, 170,234,229, 278 

229,221, 78.2,221,70,6. 205.1052 
ee 167,227, 62,125,461, 1085 
21,119,10,221,203,7,70,40,991 

5,221 8o 8s eas Gs ee 

6,221,78,8,221,70,6,205,807 
170,34, 209,729,205,40, 178,221,1286 
126,6,221, 205,7,70,40,5,678 
221,192.1,24,%,221,190,2,.85: 
Se, 207, 225,221 126.8, 166,119,1106 

221,72,10 62.0 25,119, 16.535 
252 55,2271, 126,9, 146,119,201 1129 
Sook Lk 

6,@,221,78,.10,237,176,221, 949 
126. re ers 47, 166 79,235,120, eR 

166, 7 119,23 5201, 221, 126.2,1047 
221,190,080, 40, oe 63,221,869 

124, 1.221, 190, 5, 42,57,56,694 
=o, 201, 76 0,221, 70,1,205,851 
170, 34,229, 221,119.4.231,78,1076 

© eet 76.1 eee ee 4 oi gaa 
119,5,195,121,189 48,256,221 ,915 
70,4,62,@,55,31,16,252,492 
O31, i19 58,221, 70,5, 65,255 csi 
167,31. 16,252,221, 119,9,201,1@16 
207 ,25,0,8,8,0,0,0,232 

PRINT “ERROR IN LINE “st: STOP 



REVERSE/PROGRAMMING PROJECTS 

SHUFFLE THOSE DIGITS 

: ; cos algorithm into the program to help a player who 
| Our series of short entertaining programs sets stuck. 
| continues with a look at a puzzle known as 
| Reverse. The object of the game is to Reverse 

arrange a list of numbers in ascending order 20 DIM a C20, 
| in the least number of moves. This may 

seem exceedingly simple, but often the best 
* puzzles stem from the simplest concepts. 

Woy 
4 n 

POTENT ioG) od ty ig 

Juans | ¢ 

1 

PUA D 
ECR Mm 

CR AMO Rr TD 

ce Cet at ed ue 
| The program randomly generates a list of numbers 
| for sorting. Changing the order of the numbers is 
| possible only by reversing specified groups within 
| the list. For example, if the computer generates the 
| following random list in response to the player’s 

request for nine numbers: 

| 284715693 

| and the player then specifies ‘Reverse? 5’, the first 
| five numbers will be inverted and the list becomes: 

: 174825693 
It shouldn’t take you too much time and effort to 
solve a puzzle like this, and you would expect that 

| it could be easily solved by a predefined algorithm. 
| In practice, however, it is difficult to define a really 

good one. Suppose that there are n numbers in the 
list. The most obvious algorithm is this: 

| @ Find the largest number in the list and reverse all 
the numbers up to its position. The largest number 

| is now at the left-hand end of the list. 
M Reverse all n numbers so that the largest 

| number is in its desired position at the right-hand 
| end of the list. This has taken only two reverses. 
Dp. @ Find the second largest number and repeat the 

whole procedure again. To move this number to its 
| desired location requires a “Reverse n-1’ move. 

M Repeat the procedure until the order is 
| obtained. 
| This algorithm always solves the puzzle in 2n-3 
| moves. But it is possible to achieve a solution in 

fewer moves than this. To demonstrate how a 
| _ forward-looking strategy can reduce the number 

of turns, consider the example we give in the box. 
Our algorithm would take seven (2X5-3) 
turns, but a skilled player could doit in four. 

This program is a simple example of a whole 
series of reversing games that people have created 
and explored. You might like to try your hand at 

| developing games that reverse from either end of 
the line, or where you have to sort out a grid of 
numbers rather than just a line. If you do design 
your own version of the game, you might like to 
jazz it up by using different coloured blocks to 
replace the numbers. The object of the game could 
then be to rearrange a line of blocks to match a 
pattern of coloured blocks at the top of the screen. 
You might also like to try incorporating an 

PRINT 

“1 THEN G0 

Te 7 

CS TO 14a 

tea LEE 

Ae Lie 

o— 

. oS 

_ o 
_ 

THE HOME COMPUTER ADVANCED COURSE 399 



Industrial Instruments Group 
‘Technological subjects 
researched at Sharp's 
Engineering Centre are 

transferred to the IIG plant 
(shown here) at Yamato- 

-Koriyama-shi, Nara, Japan, 
where the Corporation's 
products (including calculators 
and personal computers) are 
designed 

GLOBAL ENTERPRISE 
The orporation is a Japanese-based 
company that manufactures an enormous 
range of products, from transistors and 
refrigerators to computers and industrial 
robots. International sales in 1983, the year 
it entered the UK home computer market, 
amounted to nearly £2 billion. | 

The Sharp Corporation has always been party t 
major technological innovation. But its first 
successful product was an extremely humble item 
— the ‘Ever Sharp’ propelling pencil. Its creator, 
Tokuji Hayakawa, set up Sharp in 1915 to 
manufacture his invention; and the company 
expanded steadily in succeeding years. In 1925 it 
moved into electronics with a crystal radio set; and 
entry into the world’s consumer electronics 
markets came in the post-war years when it began 
producing television sets and other domestic 
appliances. In the mid-1960s the company 
intervened in the business machinery market with 
a series of desk-top calculators. Today it is a huge 
multinational corporation, subdivided into six 
manufacturing groups, with 34 production plants 
in 30 countries outside Japan. 

The first Sharp computer marketed in the UK 
was the MZ80K, which was launched in 1981. The 
following year, the company added the MZ380A 
and MZ380B to its range. Although these 
computers were marketed as business machines, 
they also found favour with home micro users. 
Each model comes equipped with a built-in 

- monitor and cassette drives. Originally, these 

400 THE HOME COMPUTER ADVANCED COURSE 

computers were marketed as ‘clean machines’, 
emphasising their lack of a resident language in 
ROM. The advantage of this was that a variety of 
languages, including CP/M, could be loaded on- 
board from cassette. 

Sharp began selling a full range of business and 
home computers in the UK at the beginning of 
1983, when the company’s list of products was — 
extended to include the MZ-3541 business 
machine and the PC-1500 pocket computer. The 
success of the latter led to the marketing of the 
PC-1251 pocket computer. | 

The company entered the home computer 
market with the launch of the Sharp MZ-711. This 
is the European version of the Japanese MZ-700 
series, and the enormous Japanese character set of 
the original has allowed room for extra graphics 
facilities on the European model, The machine 
has a data recorder fitted as standard, and space is 
included for an optional printer/plotter. 

In May 1984, the company released the PC- 
1500A, an upgrade of the PC-1500. The new 
model is fitted with 8.9 Kbytes of RAM, which can 
be expanded up to 24 Kbytes. In the autumn of 
1984 the company plans to launch the PC-1350 
pocket machine with a four-line display and 
graphics capability. Sharp Corporation also 
intends to introduce the Sharpwriter package, 
which is a marriage of the Sharp ZX-401 electric 
typewriter and the MZ-3541 microcomputer. The 
typewriter is used as a _keyboard/printer 
connected to an RS232 interface in the computer. 

Asked about further developments from Sharp, 
sales director Rod Goodier says that he is 
‘personally very keen to expand the pocket 
computer market, where there is very great 
potential’. This does not mean that the home 
computer market will be neglected. “With the MZ- 
700 family we will really go to town, and we intend 
to stay firmly in the home computer market.’ 

k Company spokesman Peter Fletcher explains: 
‘The business equipment division, including home 
computers, is a relatively recent innovation, and 
represents 25 per cent of turnover in the UK. The 

. plan is to increase the proportion of turnover.’ 
At the moment Sharp UK has only .a 

warehousing and marketing operation. The 
company is currently building a £15 million plant 
in Wrexham to assemble video recorders. The 
plant is expected to produce 60,000 machines in 

| 1985 for distribution throughout Europe. 
On the question of Sharp’s involvement with 

other Japanese companies in the expected MSX 
invasion in the autumn, Rod Goodier replies that 
‘Sharp have developed an MSX system, but there 
are no plans to launch in the UK at the moment.’ 



leep—or keep yo 
Fy 



ae 

J 

cc ete 

RSLSALO RAMONE EEL ty, i 

e
t
 pvactnet e

t
t
e
r
 
t
t
t
 
i
t
 t
e
t
 n
e
i
n
 

e
d
 te
t
 

t
e
r
s
 n
n
d
 
t
e
 
e
t
t
 
t
a
s
e
 
m
a
s
t
e
r
c
a
s
e
 

A
D
M
 
beADe t

b
s
 
s
r
e
e
 
A
t
t
e
 

OPMAh L
o
g
a
n
d
a
l
e
 

t
i
n
d
 

3 
5 

o 

array 

al 

ct
io
n 

n
e
t
i
 

J
e
s
s
i
e
 
sicher 

E
E
 

RR Naame 

bisces, : é 
‘Scuitateesmsemamenss™ 

: femme 

¢ 

ciunusin c
i
e
r
t
o
 

seem gests w
i
g
 

lrstraansen 
e
s
 t
i
s
t
s
 b
e
s
s
e
r
 

t
a
i
 e
c
o
 e
t
 t
e
l
 
e
e
l
s
 
a
i
m
e
e
 

e
d
 titi Shia 

e
e
t
 
doi 

eid 
t
d
 

z 
3 

isis 


